\begin{tabbing} ecl{-}act(${\it ds}$; ${\it da}$; $m$; $x$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$ecl\_ind(\=$x$;\+ \\[0ex]$k$,${\it test}$.($\lambda$$L$.False); \\[0ex]$a$,$b$,${\it aa}$,${\it ab}$.($\lambda$$L$.(${\it aa}$($L$)) \\[0ex]$\vee$ ($\exists$\=$L_{1}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex]$\exists$\=$L_{2}$:event{-}info(${\it ds}$;${\it da}$) List\+ \\[0ex](($L$ = append($L_{1}$; $L_{2}$) $\in$ (event{-}info(${\it ds}$;${\it da}$) List)) \\[0ex]$\wedge$ (ecl{-}halt(${\it ds}$; ${\it da}$; $a$)(0,$L_{1}$)) \\[0ex]$\wedge$ (${\it ab}$($L_{2}$))))); \-\-\\[0ex]$a$,$b$,${\it aa}$,${\it ab}$.($\lambda$$L$.((${\it aa}$($L$)) \\[0ex]$\wedge$ \=($\forall$${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List), $n$:$\mathbb{N}^{+}$.\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (ecl{-}halt(${\it ds}$; ${\it da}$; $b$)($n$,${\it L'}$)) \\[0ex]$\Rightarrow$ (${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List)))) \-\\[0ex]$\vee$ \=((${\it ab}$($L$))\+ \\[0ex]$\wedge$ \=($\forall$${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List), $n$:$\mathbb{N}^{+}$.\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (ecl{-}halt(${\it ds}$; ${\it da}$; $a$)($n$,${\it L'}$)) \\[0ex]$\Rightarrow$ (${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List))))); \-\-\\[0ex]$a$,$b$,${\it aa}$,${\it ab}$.($\lambda$$L$.((${\it aa}$($L$)) \\[0ex]$\wedge$ \=($\forall$${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List), $n$:$\mathbb{N}$.\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (ecl{-}halt(${\it ds}$; ${\it da}$; $b$)($n$,${\it L'}$)) \\[0ex]$\Rightarrow$ (${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List)))) \-\\[0ex]$\vee$ \=((${\it ab}$($L$))\+ \\[0ex]$\wedge$ \=($\forall$${\it L'}$:(event{-}info(${\it ds}$;${\it da}$) List), $n$:$\mathbb{N}$.\+ \\[0ex]iseg(event{-}info(${\it ds}$;${\it da}$); ${\it L'}$; $L$) \\[0ex]$\Rightarrow$ (ecl{-}halt(${\it ds}$; ${\it da}$; $a$)($n$,${\it L'}$)) \\[0ex]$\Rightarrow$ (${\it L'}$ = $L$ $\in$ (event{-}info(${\it ds}$;${\it da}$) List))))); \-\-\\[0ex]$a$,${\it aa}$.star{-}append(event{-}info(${\it ds}$;${\it da}$); (ecl{-}halt(${\it ds}$; ${\it da}$; $a$)(0)); ${\it aa}$); \\[0ex]$a$,$n$,${\it aa}$.if ($m$ =$_{0}$ $n$) then ecl{-}halt(${\it ds}$; ${\it da}$; $a$)(0) else ${\it aa}$ fi ; \\[0ex]$a$,$n$,${\it aa}$.${\it aa}$; \\[0ex]$a$,$l$,${\it aa}$.${\it aa}$) \- \end{tabbing}